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Abstract In this paper, the authors consider the distributed adaptive identification problem over

sensor networks using sampled data, where the dynamics of each sensor is described by a stochastic

differential equation. By minimizing a local objective function at sampling time instants, the authors

propose an online distributed least squares algorithm based on sampled data. A cooperative non-

persistent excitation condition is introduced, under which the convergence results of the proposed

algorithm are established by properly choosing the sampling time interval. The upper bound on the

accumulative regret of the adaptive predictor can also be provided. Finally, the authors demonstrate the

cooperative effect of multiple sensors in the estimation of unknown parameters by computer simulations.

Keywords Cooperative excitation condition, distributed least squares, regret, sampled data, stochas-

tic differential equation.

1 Introduction

With the rapid development of information technology in recent decades, wireless sensor
networks are widely applied in various fields such as pollution control, ocean sampling, UAV
formation control, and machine health monitoring (cf., [1, 2]). Sensor networks can gather a
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large amount of data, and how to use these data to design appropriate algorithms to estimate
unknown parameters is a meaningful research direction. The centralized and distributed meth-
ods are commonly used in the design of estimation algorithms. In the centralized method, a
fusion center is needed to process the data from all sensors, while the sensors in the distributed
scheme can cooperatively estimate unknown parameters of interest by using local measure-
ments. It is clear that the distributed algorithms have the advantages of robustness to node
or link failures, reducing calculation pressure and communication load, see [3–8] among many
references.

For the discrete-time dynamical systems, incremental-, consensus-, diffusion-based distribut-
ed estimation or filtering algorithms have been proposed and considerable progress has been
made in the corresponding analysis of the algorithms. For the time-invariant unknown pa-
rameter case, a bias-compensated distributed least squares (LS) algorithm based on diffusion
strategy was proposed by Bertrand, et al. in [9] and the mean-square stability with indepen-
dent and ergodic regressors was obtained. Cattivelli, et al. in [10] designed a diffusion-based
distributed LS algorithm and studied the mean-square performance of the proposed algorithm
under similar conditions of regressors. Arablouei, et al. in [11] presented a partial diffusion-
based distributed LS algorithm and established the mean-square stability results of the proposed
algorithm under independent and ergodic inputs. We remark that the independency and er-
godicity assumptions of regressors or inputs using in the above literature are too stringent to
be satisfied for dynamical feedback systems. In order to overcome this issue, Xie, et al. in [4]
proposed a cooperative non-persistent excitation (non-PE) condition, under which the conver-
gence of the diffusion-based distributed LS algorithm was established. Other algorithms such
as distributed stochastic gradient algorithm, distributed stochastic approximation algorithm,
and distributed weighted LS algorithm were also investigated, see [12–14] for more references.
For the case where the unknown parameters are time-varying, the stability and performance
analysis for the classical distributed least mean squares algorithms with independent and sta-
tionary signals were investigated (cf., [15]). For non-independent or non-stationary signals,
Xie and Guo in [5, 16] introduced a joint information condition, and then established stabil-
ity and performance analysis theory of the proposed algorithms under this condition. The
distributed Kalman filter and distributed forgetting factor least squares algorithm were also
studied in [17, 18].

It is known that the dynamics in physics and engineering systems such as advection-diffusion,
oil spill, and electromagnetic induction are naturally modeled by (stochastic) differential equa-
tions (cf., [3, 19]). For the distributed identification problem of continuous-time systems, some
theoretical results based on continuous-time signals were obtained (cf., [3, 20–24]). For example,
Chen, et al. in [22] established the convergence result of the consensus-based identification algo-
rithm for a group of continuous-time subsystems with uniformly bounded regressors satisfying
a cooperative PE condition. You and Wu in [3] proposed a consensus-based identification algo-
rithm to estimate unknown parameters of the advection-diffusion partial differential equations
and proved the convergence results of the proposed algorithm under a similar cooperative PE
condition. Papusha, et al. in [23] introduced a consensus-based gradient algorithm and investi-
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gated the asymptotic convergence of the algorithm with cooperative PE inputs. Furthermore,
Javed, et al. in [24] analyzed the uniform exponential stability of the consensus-based gradient
algorithm with cooperative PE regressors. More related results about distributed estimation al-
gorithms for continuous-time systems can be found in [25–27]. In summary, for continuous-time
distributed estimation algorithms, the regression signals are often required to be deterministic
and satisfy PE conditions.

We note that the data collected by sensors are often digital (or discrete-time) due to the
communication and computer technologies. Therefore, the identification problem of continuous-
time (stochastic) systems based on discrete-time signals is more practical, but few results are
obtained in this direction. For single sensor case, Marelli and Fu in [28] converted the identifica-
tion problem of continuous-time systems based on sampled data into the identification problem
of sampling systems by applying constant sampling intervals and signal reconstruction tech-
niques, and illustrated the effectiveness of the proposed method by simulation examples. Pan,
et al. in [29] proposed a refined instrumental variable method for continuous-time systems by
using similar techniques, and established consistency results of the estimator under PE inputs.
More related analysis can be found in [30–32]. In these references, the PE conditions of regres-
sion or input signals are required, which is hard to be satisfied in general. In order to relax the
PE condition, we put forward a least squares algorithm for continuous-time system based on
sampled data in [39], and provided the convergence analysis of the algorithm under a non-PE
condition. However, the investigation of distributed identification problem of continuous-time
systems over sensor networks is still lack.

In this paper, we design the distributed algorithm to estimate unknown parameters of
continuous-time systems based on sampled data, and give theoretical analysis for the con-
vergence of the algorithm. The main contributions of this paper can be summarized as follows.

1) We introduce a local objective function to characterize the accumulative sampling pre-
diction error. By minimizing the objective function, we put forward the online distributed LS
algorithm based on sampled data.

2) By employing the martingale estimation theory and stochastic Lyapunov function method,
we provide upper bounds on the estimation error and the accumulative regret of the adaptive
predictor of the distributed LS algorithm. Furthermore, under a cooperative non-PE excitation
condition of regression signals, the convergence can be obtained by properly choosing flexible
sampling time intervals.

The rest of this paper is arranged as follows. The problem formulation is given in Section 2.
In Section 3, asymptotic analysis of the proposed algorithm are established. Simulation results
are given in Section 4, and concluding remarks are made in Section 5.

2 Problem Formulation

2.1 Some Preliminaries

For an n-dimensional square matrix A ∈ R
n×n, we use λmin(A), λmax(A) and |A| to denote

its minimum eigenvalue, maximum eigenvalue and determinant, respectively. For an m × n-
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dimensional matrix A ∈ R
m×n, we use ‖A‖ and AT to denote its Euclidean norm and transpose

operator. A square matrix is said to be stochastic if all its elements are nonnegative and the
sum of all rows are equal to 1. For a positive scalar sequence {ak, k ≥ 0} and a matrix sequence
{Ak, k ≥ 0}, the notation Ak = O(ak) means that ‖Ak‖ ≤ Cak holds for all k ≥ 0 where C

is a positive constant independent of t, and Ak = o(ak) means that limk→∞
‖Ak‖

ak
= 0. The

Kronecker product A⊗B of two matrices A = [aij ] ∈ R
m×n and B = [bij ] ∈ R

p×q is defined as
the following block matrix

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎥⎥⎦ ∈ R

mp×nq.

In this paper, we consider the distributed estimation problem of stochastic regression models.
Thus, we need to introduce some related concepts and lemmas in probability theory. For a
probability space (Ω,F , P ), we use {Fk, k ≥ 0} to denote a family of nondecreasing σ-algebras
of F , i.e., Fk1 ⊆ Fk2 for k1 ≤ k2. If a stochastic sequence νk is Fk-measurable, then νk is
called Fk adapted. An adapted stochastic sequence {νk,Fk} is called a martingale difference
sequence if E(νk+1|Fk) = 0 where E(·|·) represents the conditional expectation operator. The
following martingale estimation theorem plays an important role in estimating the summation
of stochastic sequences.

Lemma 2.1 ([33]) Suppose that mk is Fk-measurable and {ξk,Fk} is a martingale dif-
ference sequence satisfying supk E[‖ξk+1‖β |Fk] < ∞ with β ∈ (0, 2]. Then for any η > 0, the
following equation holds almost surely,

n∑
k=0

mkξk+1 = O
(
Un(β) log

1
β +η(Un(β) + e)

)
,

where Un(β) is defined by Un(β) =
(∑n

k=0 ‖mk‖β
) 1

β

.

An adapted continuous stochastic process {Xt,Ft; t ≥ 0} is called a Wiener process if X0 = 0
holds almost surely (a.s.), and for any 0 ≤ s1 < s2 < ∞, Xs1 − Xs2 is independent of Fs1 , and
obeys a normal distribution with mean zero, variance s2 − s1.

For the convenience of analysis, we model the communication between sensors as an undi-
rected graph G = (V , E). Ni = {j ∈ V|(j, i) ∈ E} is used to denote the neighbor set of the
sensor i. A path with length h in the graph G is defined as a sequence of sensors {i1, · · · , ih}
satisfying (ij , ij+1) ∈ E for all 1 ≤ j ≤ h − 1. The diameter of the graph G, denoted as DG ,
is defined as the maximum shortest length of the path between any two sensors. The elements
of the weighted adjacency matrix A = [aij ]n×n are non-negative, and aij > 0 if and only if
(i, j) ∈ E . More details on the graph theory can be found in [34].
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2.2 Distributed LS Algorithm Based on Sampled Data

We consider a network consisting of N sensors. For each sensor i ∈ {1, · · · , N}, its dynamics
is described by the following continuous-time stochastic differential equation

yt,i = SφT
t,iθ + vt,i, (1)

where S is the integral operator (i.e., SφT
t,i =

∫ t

0 φT
s,ids), yt,i is the scalar output of the sensor i

at time t, φt,i is an l-dimensional stochastic regressor, vt,i is the system noise, and θ ∈ R
l is the

unknown parameter vector to be estimated. It is clear that many models can be written in the
form of the model (1), such as the continuous-time ARX model and ARMAX model (cf., [35]).

Limited by communication and computer technologies, sensors often collect discrete-time
or sampled data. In this paper, we design the distributed algorithm to cooperatively estimate
the unknown parameter vector θ in (1) by using sampled data from neighbors. The following
matrix inversion formula is useful in deriving the recursive form of the algorithm.

Lemma 2.2 ([33]) Let A, B, C and D be matrices with appropriate dimensions, and the
related matrices be invertible. Then we have the matrix inversion formula as follows

(A + BCD)−1 = A−1 − A−1B(D−1 + CA−1B)−1CA−1. (2)

We recursively define the following local objective function Jtk+1,i(β),

Jtk+1,i(β) =
∑
j∈Ni

aij

{
Jtk,i(β) +

(
ytk+1,j − ytk,j − βTδkφtk,j

)2}
(3)

with J0,i(β) = 0. By simple calculation, we can derive the following equation from (3),

Jtk+1,i(β) =
N∑

j=1

k∑
s=0

a
(k+1−s)
ij

(
yts+1,j − yts,j − βTδsφts,j

)2
,

where a
(k+1−s)
ij is the (i, j)-th element of the matrix Ak+1−s, ts represents the s-th sampling

time instant and δs = ts+1− ts is the sampling period. By minimizing the above local objective
function Jtk+1,i(β), we obtain the following distributed LS algorithm based on sampled data,

θtk+1,i � argmin
β

Jtk+1,i(β)

=

⎛
⎝

N∑
j=1

k∑
s=0

a
(k+1−s)
ij δ2

sφts,jφ
T
ts,j

⎞
⎠

−1⎛
⎝

N∑
j=1

k∑
s=0

a
(k+1−s)
ij δsφts,j

(
yts+1,j − yts,j

)
⎞
⎠ .

(4)

Denote

Ptk+1,i =

⎛
⎝

N∑
j=1

k∑
s=0

a
(k+1−s)
ij δ2

sφts,jφ
T
ts,j

⎞
⎠

−1

(5)

and
P

−1

tk+1,i = P−1
tk,j + δ2

kφtk,jφ
T
tk,j .



614 ZHU XINGHUA · GAN DIE · LIU ZHIXIN

It is clear that the information matrix Ptk+1,i can be written into the following recursive form:

P−1
tk+1,i =

∑
j∈Ni

aij

(
P−1

tk,j + δ2
kφtk,jφ

T
tk,j

)
.

By Lemma 2.2, we can derive the following equation for P tk+1,i,

P tk+1,i = Ptk,i −
δ2
kPtk,iφtk,iφ

T
tk,iPtk,i

1 + δ2
kφT

tk,iPtk,iφtk,i
. (6)

Substituting (5) and (6) into (4), we can derive the recursive expression of the distributed LS
algorithm as follows:

θtk+1,i =Ptk+1,i

∑
j∈Ni

aij

[
P−1

tk,jθtk,j + δkφtk,j

(
ytk+1,j − ytk,j

)]

=Ptk+1,i

∑
j∈Ni

aijP
−1

tk+1,jP tk+1,j

[
P−1

tk,jθtk,j + δkφtk,j

(
ytk+1,j − ytk,j

)]
(7)

=Ptk+1,i

∑
j∈Ni

aijP
−1

tk+1,j

[
θtk,j +

δkPtk,jφtk,j

1 + δ2
kφT

tk,jPtk,jφtk,j

(
ytk+1,j − ytk,j − δkφT

tk,jθtk,j

)
]

.

Denote θtk+1,i � θtk,i + δkPtk,iφtk,i

1+δ2
kφT

tk,iPtk,iφtk,i

(
ytk+1,i − ytk,i − δkφT

tk,iθtk,i

)
. Then, the equation (7)

becomes
θtk+1,i = Ptk+1,i

∑
j∈Ni

aijP
−1

tk+1,jθtk+1,j .

From the above analysis, the distributed least squares algorithm based on sampled data for
the continuous-time linear regression model (1) can be summarized by Algorithm 1.

Denote

Yt � (yt,1, · · · , yt,N )T,

Ψt � diag{φt,1, · · · , φt,N },
Vt � (vt,1, · · · , vt,N )T,

ϑ � col{θ, · · · , θ},

where diag{· · · } denotes a block diagonal matrix in which each block is the corresponding
vector or matrix, and col{· · · } denotes a column vector whose elements are stacked by specified
vectors. Then the system (1) can be written into the following compact form:

Yt = SΨT
t ϑ + Vt. (13)
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Algorithm 1 Distributed LS Algorithm Based on Sampled Data
For any i ∈ {1, · · · , n}, begin with an initial estimate θ0,i ∈ R

l and a positive definite matrix
P0,i ∈ R

l×l. The distributed LS algorithm based on sampled data is recursively designed as
follows.
Step 1: Adaptation. θtk+1,i and P tk+1,i are recursively updated according to the following
equations,

θtk+1,i = θtk,i + δkatk,iPtk,iφtk,i

(
ytk+1,i − ytk,i − δkφT

tk,iθtk,i

)
, (8)

P tk+1,i = Ptk,i − δ2
katk,iPtk,iφtk,iφ

T
tk,iPtk,i, (9)

atk,i =
1

1 + δ2
kφT

tk,iPtk,iφtk,i
. (10)

Step 2: Combination. Generate θtk+1,i and Ptk+1,i according to the following combination
manner,

Ptk+1,i =

⎧
⎨
⎩
∑
j∈Ni

aijP
−1

tk+1,j

⎫
⎬
⎭

−1

, (11)

θtk+1,i = Ptk+1,i

∑
j∈Ni

aijP
−1

tk+1,jθtk+1,j . (12)

Similarly, we introduce the following notations:

ϑtk
� col{θtk ,1, · · · , θtk ,N },

ϑ̃tk
� col{θ̃tk ,1, · · · , θ̃tk ,N }, θ̃tk,i = θtk,i − θ,

ϑ̃tk
� col{θ̃tk ,1, · · · , θ̃tk ,N }, θ̃tk,i = θtk,i − θ,

atk
� diag{atk ,1, · · · , atk ,N },

Ptk
� diag{Ptk ,1, · · · ,Ptk ,N},

P tk
� diag{P tk ,1, · · · ,P tk ,N },

A � A⊗ Il,

where A is the weighted adjacency matrix and ⊗ is the Kroneker product. Then the distributed
LS algorithm (8)–(12) can be equivalently written into the following equations:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϑtk+1 = ϑtk
+ δkbtk

Ptk
Ψtk

(
Ytk+1 − Ytk

− δkΨT
tk

ϑtk

)
,

P tk+1 = Ptk
− δ2

kbtk
Ptk

Ψtk
ΨT

tk
Ptk

,

btk
= atk

⊗ Il,

atk
=
(
IN + δ2

kΨ
T
tk

Ptk
Ψtk

)−1
,

(14)
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and ⎧
⎨
⎩

vec{P−1
tk+1

} = A vec{P−1

tk+1
},

ϑtk+1 = Ptk+1A P
−1

tk+1
ϑtk+1 ,

(15)

where vec{·} represents the matrix stacked by the blocks of a block-diagonal matrix on top of
each other.

3 Asymptotic Results of the Distributed LS Algorithm.

3.1 Convergence Analysis of the Algorithm

In order to investigate the asymptotic properties of the distributed LS algorithm proposed
in Subsection 2.2, we first introduce some assumptions.

Assumption 3.1 (Noise) The noise {vt,i,Ft} is a Wiener process, where {Ft} is a family
of nondecreasing σ-algebras with Ft = σ{φs,i, vs,i, i = 1, · · · , N, s ≤ t}.

Remark 3.2 Assumption 3.1 is a basic assumption for continuous-time noises. Many
noises in the investigation of control and filtering problems of continuous-time systems are
modeled by Wiener process, such as the population growth model, circuit system (cf., [36]).
From Assumption 3.1, we know that for k ≥ 0, vtk,i � vtk,i−vtk−1,i follows a normal distribution
with mean 0 and variance δk, and {vtk,i,Ftk

} is a martingale difference sequence satisfying
0 < supk E[|vtk,i|γ |Ftk

] < ∞ a.s. for any constant γ ≥ 2.

Assumption 3.3 (Network topology) The graph G is connected, and the weighted adja-
cency matrix A is symmetric and doubly stochastic.

Remark 3.4 For the undirected graph case, connectivity is often used in theoretical
investigations of multi-agent systems and distributed algorithms. In fact, the convergence
results obtained in this paper can be also extended to the directed graph case where G is
balanced and strongly connected. Denote Ah = [a(h)

ij ]N×N , where a
(h)
ij represents the (i, j)-th

element of the matrix Ah. By Lemma 8.1.2 in [34] and Assumption 3.3, we can easily derive
that a

(DG)
ij ≥ amin > 0, where amin = mini,j∈V a

(DG)
ij . By the property of stochastic matrices,

we have for any t > DG , a
(t)
ij ≥ amin > 0.

Assumption 3.5 The stochastic regressor φt,i is Lipschitz continuous for almost all sam-
ple paths, i.e., ‖φt,i −φs,i‖ ≤ L|t− s|, a.s. holds for all t > 0, s > 0, and i ∈ {1, · · · , N}, where
L > 0 is a constant.

Remark 3.6 Intuitively speaking, if the nonlinear regression vectors φt,i grows too fast
with t, then it is difficult to deal with the approximation derivation from the sampled data.
Thus, we need to add some assumptions on the growth rate of φt,i, and Assumption 3.5 is often
used in the analysis and control of nonlinear dynamical systems (cf., [37, 38]). We can verify
that many signals can be included in Assumption 3.5, such as sine signals, cosine signals, linear
signals.

Assumption 3.7 The sampling interval sequence {δk, k ≥ 0} satisfies
∑t

k=0 δ2
k = ∞ and∑t

k=0 δ4
k < ∞.
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Remark 3.8 From the simulation example in Section 4, we see that the constant sampling
intervals can not guarantee convergence of the proposed algorithm. Thus, it is necessary to
introduce the flexible sampling intervals to investigate the performance of the algorithm.

Assumption 3.9 (Cooperative non-persistent information condition) The growth rate of
log
(
λmax

{
P−1

tn+1

})
and λmin

{
P−1

tn+1

}
satisfies the following relationship:

lim
n→∞

log Rn

λn
min

= 0 a.s.,

where λn
min = λmin

{∑N
j=1 P−1

0,j +
∑N

j=1

∑n−DG+1
k=0 δ2

kφtk,jφ
T
tk,j

}
and

Rn = λmax

{
P−1

0

}
+

N∑
j=1

n∑
k=0

δ2
k‖φtk,j‖2. (16)

Remark 3.10 For the single sensor case, we proved that convergence of the LS algorithm
based on sampled data can be achieved under the following information condition (see [39]):

lim
n→∞

log
(
λmax

{
P−1

0,i

}
+
∑n

k=0 δ2
k‖φtk,i‖2

)

λmin

{
P−1

0,i +
∑n

k=0 δ2
kφtk,iφT

tk,i

} = 0, a.s.. (17)

The cooperative non-persistent information condition (Assumption 3.9) can be degenerated
to (17) when N = 1. Moreover, Assumption 3.9 can reveal the cooperative effect of multiple
sensors in a sense that multiple sensors can cooperate to accomplish the estimation task through
information exchange, even if none of them can do it alone due to lack of sufficient excitations.
We will illustrate this point by a simulation example in Section 4.

Denote

Ξtk+1 �diag{Ξtk+1,1, · · · ,Ξtk+1,N } with Ξtk+1,i =
∫ tk+1

tk

φs,ids − δkφtk ,i , (18)

V tk+1 �Vtk+1 − Vtk
= (v tk+1,1, · · · , v tk+1,N )T.

By the above notations and definition of Ψt, we have Ξtk+1 =
∫ tk+1

tk
Ψsds − δkΨtk

. From (13)
and (14), we have

ϑ̃tk+1 =ϑtk+1 − ϑ

=ϑtk
− ϑ + δkbtk

Ptk
Ψtk

(∫ tk+1

tk

ΨT
s dsϑ + V tk+1 − δkΨT

tk
ϑtk

)

=ϑ̃tk
+ δkbtk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1 − δkΨT

tk
ϑ̃tk

)

=
(
INl − δ2

kbtk
Ptk

Ψtk
ΨT

tk

)
ϑ̃tk

+ δkbtk
Ptk

Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)

=P tk+1P
−1
tk

ϑ̃tk
+ δkbtk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)
, (19)
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where l is the dimension of unknown parameter θ. By (15) and the fact that Ptk+1A P
−1

tk+1
ϑ = ϑ,

we can derive the following error equation:

ϑ̃tk+1 =ϑtk+1 − ϑ

=Ptk+1A P
−1

tk+1
ϑtk+1 − Ptk+1A P

−1

tk+1
ϑ

=Ptk+1A P
−1

tk+1
ϑ̃tk+1 . (20)

Before analyzing the above equation, we need to introduce a lemma which reveals the
relationship between the matrix P tk+1 and Ptk+1 in the algorithm (14)–(15). This lemma will
be used to deal with the influence of neighbor relationship on the convergence of the proposed
algorithm.

Lemma 3.11 (see [4]) By (11), we have the following inequalities:

A Ptk+1A ≤ P tk+1 ,∣∣P−1

tk+1

∣∣ ≤ ∣∣P−1
tk+1

∣∣,
where P tk+1 and Ptk+1 are defined by (14) and (15).

As mentioned in [38, 40], the approximation deviation Ξtk
defined by (18) should not be

ignored, and we take the influence of Ξtk
on the performance analysis of the algorithm into

account in this paper. Based on the lemmas introduced above, we can first obtain the following
theorem for the estimation error without any information excitation condition on the regression
vector φt,i.

Theorem 3.12 Under Assumption 3.1, the following equation holds almost surely,

ϑ̃T
tn+1

P−1
tn+1

ϑ̃tn+1 +
(

1
2

+ o(1)
) n∑

k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

= O

( n∑
k=0

(ΞT
tk+1

ϑ)2 + log |P−1
tn+1

|
)

.

Proof Consider the Lyapunov candidate function Wtk
= ϑ̃T

tk
P−1

tk
ϑ̃tk

. By (20) and the
lemma 3.11, we have

ϑ̃T
tk+1

P−1
tk+1

ϑ̃tk+1 = ϑ̃
T

tk+1
P

−1

tk+1
A Ptk+1P

−1
tk+1

Ptk+1A P
−1

tk+1
ϑ̃tk+1

≤ ϑ̃
T

tk+1
P

−1

tk+1
ϑ̃tk+1 . (21)

Substituting (19) into the equation (21), we obtain the following equation:

ϑ̃
T

tk+1
P

−1

tk+1
ϑ̃tk+1

=
{
P tk+1P

−1
tk

ϑ̃tk
+ δkbtk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)}T

P
−1

tk+1

·
{

P tk+1P
−1
tk

ϑ̃tk
+ δkbtk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)}

=ϑ̃T
tk

P−1
tk

P tk+1P
−1
tk

ϑ̃tk
+ 2δk

(
ΞT

tk+1
ϑ + V tk+1

)T

ΨT
tk

btk
ϑ̃tk

+ δ2
k

(
ΞT

tk+1
ϑ + V tk+1

)T

ΨT
tk

Ptk
btk

P
−1

tk+1
btk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)
.

(22)



DISTRIBUTED LS ALGORITHM BASED ON SAMPLED DATA 619

Noticing that matrices atk
, btk

, Ψtk
and Ptk

are all block diagonal, we can derive the following
equations:

btk
Ψtk

= Ψtk
atk

, ΨT
tk

btk
= atk

ΨT
tk

, Ptk
btk

= btk
Ptk

. (23)

By a simple calculation and (14), the first term on the right-hand-side (RHS) of (22) satisfies
the following equation:

ϑ̃T
tk

P−1
tk

P tk+1P
−1
tk

ϑ̃tk
=ϑ̃T

tk
P−1

tk

(
Ptk

− δ2
kPtk

Ψtk
atk

ΨT
tk

Ptk

)
P−1

tk
ϑ̃tk

=ϑ̃T
tk

P−1
tk

ϑ̃tk
− δ2

kϑ̃T
tk

Ψtk
atk

ΨT
tk

ϑ̃tk
.

(24)

For the second term on the RHS of (22), by (23) we can derive the following equation:

2δk

(
ΞT

tk+1
ϑ + V tk+1

)T

ΨT
tk

btk
ϑ̃tk

= 2δkϑTΞtk+1atk
ΨT

tk
ϑ̃tk

+ 2δkV
T

tk+1
atk

ΨT
tk

ϑ̃tk
. (25)

For the last term on the RHS of (22), we have

δ2
k

(
ΞT

tk+1
ϑ + V tk+1

)T

ΨT
tk

Ptk
btk

P
−1

tk+1
btk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)

=δ2
kϑTΞtk+1Ψ

T
tk

Ptk
btk

P
−1

tk+1
btk

Ptk
Ψtk

ΞT
tk+1

ϑ + 2δ2
kV

T

tk+1
ΨT

tk
Ptk

btk
P

−1

tk+1
btk

Ptk
Ψtk

ΞT
tk+1

ϑ

+ δ2
kV

T

tk+1
ΨT

tk
Ptk

btk
P

−1

tk+1
btk

Ptk
Ψtk

V tk+1 .

(26)

By (23) and δ2
katk

ΨT
tk

Ptk
Ψtk

= IN − atk
, we can deduce that

δ2
kΨ

T
tk

Ptk
btk

P
−1

tk+1
btk

Ptk
Ψtk

=δ2
kΨ

T
tk

Ptk
btk

(
P−1

tk
+ δ2

kΨtk
ΨT

tk

)
btk

Ptk
Ψtk

=δ2
ka2

tk
ΨT

tk
Ptk

Ψtk
+ (IN − atk

) δ2
katk

ΨT
tk

Ptk
Ψtk

=δ2
katk

ΨT
tk

Ptk
Ψtk

.

(27)

Substituting (27) into (26) yields

δ2
k

(
ΞT

tk+1
ϑ + V tk+1

)T

ΨT
tk

Ptk
btk

P
−1

tk+1
btk

Ptk
Ψtk

(
ΞT

tk+1
ϑ + V tk+1

)

=δ2
kϑTΞtk+1atk

ΨT
tk

Ptk
Ψtk

ΞT
tk+1

ϑ + 2δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

ΞT
tk+1

ϑ

+ δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

V tk+1 .

(28)

Substituting (22), (24), (25) and (28) into (21), we have the following inequality:

ϑ̃T
tk+1

P−1
tk+1

ϑ̃tk+1 ≤ ϑ̃
T

tk+1
P

−1

tk+1
ϑ̃tk+1

=ϑ̃T
tk

P−1
tk

ϑ̃tk
− δ2

kϑ̃T
tk

Ψtk
atk

ΨT
tk

ϑ̃tk
+ 2δkϑTΞtk+1atk

ΨT
tk

ϑ̃tk

+ 2δkV
T

tk+1
atk

ΨT
tk

ϑ̃tk
+ δ2

kϑTΞtk+1atk
ΨT

tk
Ptk

Ψtk
ΞT

tk+1
ϑ

+ 2δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

ΞT
tk+1

ϑ + δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

V tk+1 .

(29)
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Summing both sides of (29) from k = 0 to n leads to

Wtn+1 − Wt0 +
n∑

k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

≤2
n∑

k=0

δkϑTΞtk+1atk
ΨT

tk
ϑ̃tk

+ 2
n∑

k=0

δkV
T

tk+1
atk

ΨT
tk

ϑ̃tk
+

n∑
k=0

ϑTΞtk+1atk
δ2
kΨ

T
tk

Ptk
Ψtk

ΞT
tk+1

ϑ

+ 2
n∑

k=0

δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

ΞT
tk+1

ϑ +
n∑

k=0

δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

V tk+1 .

(30)

In the following, we proceed to estimate the RHS of (30) term by term. By Hölder inequality,
we can obtain the following inequality for the first term on the RHS of (30),

2
n∑

k=0

δkϑTΞtk+1atk
ΨT

tk
ϑ̃tk

≤ 2

(
n∑

k=0

‖ϑTΞtk+1‖2

) 1
2

·
(

n∑
k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

) 1
2

≤ 2
n∑

k=0

‖ϑTΞtk+1‖2 +
1
2

n∑
k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

.

(31)

By Assumption 3.1 and Remark 3.2, we see that {V tk+1 ,Ftk
, tk ≥ 0} is a martingale difference

sequence, and satisfies
0 < sup

k
E[|V tk

|γ |Ftk
] < ∞ (32)

almost surely for any γ ≥ 2. Thus, there exists a set Ω0 with P {Ω0} = 1 such that (32)
holds for ω ∈ Ω0. In the following, we will consider the estimate error ϑ̃tk

on the set Ω0. By
δkatk

ΨT
tk

ϑ̃tk
∈ Ftk

and Lemma 2.1, we get the following estimation for the second term on the
RHS of (30),

2
n∑

k=0

δkV
T

tk+1
atk

ΨT
tk

ϑ̃tk
=O

({ n∑
k=0

δ2
k(atk

ΨT
tk

ϑ̃tk
)2
} 1

2+η)

=O(1) + o

( n∑
k=0

δ2
k(atk

ΨT
tk

ϑ̃tk
)2
)

a.s.,

(33)

where η is a positive constant. Note that

atk
δ2
kΨ

T
tk

Ptk
Ψtk

≤ IN . (34)

The third term on the RHS of (30) can be estimated by

n∑
k=0

ϑTΞtk+1atk
δ2
kΨ

T
tk

Ptk
Ψtk

ΞT
tk+1

ϑ ≤
n∑

k=0

‖ϑTΞtk+1‖2. (35)



DISTRIBUTED LS ALGORITHM BASED ON SAMPLED DATA 621

By Hölder inequality and (34), we can derive the estimation for the fourth term on the RHS
of (30) as follows:

2
n∑

k=0

δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

ΞT
tk+1

ϑ

≤
n∑

k=0

δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

V tk+1 +
n∑

k=0

(ΞT
tk+1

ϑ)2

≤
n∑

k=0

‖atk
δ2
kΨ

T
tk

Ptk
Ψtk

‖ · ‖V tk+1‖2 +
n∑

k=0

(ΞT
tk+1

ϑ)2

=
n∑

k=0

λmax

{
atk

δ2
kΨ

T
tk

Ptk
Ψtk

} ·
{ N∑

i=1

v2
tk+1,i

}
+

n∑
k=0

(ΞT
tk+1

ϑ)2.

(36)

We derive the estimation for the last term on the RHS of (30) as follows:

n∑
k=0

δ2
kV

T

tk+1
atk

ΨT
tk

Ptk
Ψtk

V tk+1 ≤
n∑

k=0

λmax

{
atk

δ2
kΨ

T
tk

Ptk
Ψtk

} ·
{ N∑

i=1

v2
tk+1,i

}
. (37)

Substituting (31)–(37) into (30) yields

Wtn+1 +
(

1
2

+ o(1)
) n∑

k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

=O(1) + 4
n∑

k=0

(ΞT
tk+1

ϑ)2 + 2
n∑

k=0

λmax

{
atk

δ2
kΨ

T
tk

Ptk
Ψtk

} ·
{ N∑

i=1

v2
tk+1,i

}
a.s.. (38)

By following the proof line of Lemma 4.4 in [4], we can derive that

n∑
k=0

λmax

{
atk

δ2
kΨ

T
tk

Ptk
Ψtk

} ·
{ N∑

i=1

v2
tk+1,i

}
= O(log |P−1

tn+1
|). (39)

From (38) and (39), we can deduce the results of the theorem.
Based on the above analysis, we can obtain the upper bound on the estimation error in the

following theorem.

Theorem 3.13 Under Assumptions 3.1–3.9, the distributed LS estimator ϑtn+1 defined
by (14)–(15) converges to the true parameter ϑ almost surely.

Proof By Theorem 3.12, we can derive that ϑ̃T
tn+1

P−1
tn+1

ϑ̃tn+1=O
(∑n

k=0(Ξ
T
tk+1

ϑ)2+log |P−1
tn+1

|)

holds almost surely. Thus,

‖ϑ̃tn+1‖2 = O

(∑n
k=0(Ξ

T
tk+1

ϑ)2 + log |P−1
tn+1

|
λmin

{
P−1

tn+1

}
)

, a.s.. (40)

From Assumption 3.5 and (18), we can derive the inequality as follows:

‖Ξtk+1‖ =
∥∥∥∥
∫ tk+1

tk

(Ψs − Ψtk
)ds

∥∥∥∥ ≤
∫ tk+1

tk

L(s − tk)ds =
L

2
δ2
k, (41)
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where L is defined in Assumption 3.5. Now, we estimate the term log |P−1
tn+1

| in (40). By (11),
we have the following equation:

P−1
tn+1,i =

∑
j∈Ni

aijP
−1

tn+1,j =
∑
j∈Ni

aij

(
P−1

tn,j + δ2
kΨtn,jΨT

tn,j

)
. (42)

By Theorem 3.1 in [4], we can get the following inequality:

max
1≤i≤N

λmax

{
P−1

tn+1,i

} ≤ λmax

{
P−1

0

}
+

N∑
j=1

n∑
k=0

δ2
k‖φtk,j‖2ds.

Consequently, we have the following equation:

log |P−1
tn+1

| ≤ Nl log
(

max
1≤i≤N

λmax

{
P−1

tn+1,i

})
= O(log Rn), (43)

where Nl is the dimension of the matrix Ptn+1 . By (15) and (42), we have for any n ≥ 0,

vec{P−1
tn+1

} =A vec{P−1
tn

} + A vec
{
δ2
nΨtnΨT

tn

}

=A n+1vec{P−1
0 } +

n∑
k=0

A n+1−kvec
{
δ2
kΨtk

ΨT
tk

}
.

By the proof of Theorem 3.3 in [4] and Assumption 3.3 as well as Remark 3.4, we obtain the
following result:

λmin

{
P−1

tn+1

}
= min

1≤i≤N
λmin

{
P−1

tn+1,i

}
≥ aminλn

min,

where λn
min =

{∑N
j=1 P−1

0,j +
∑N

j=1

∑n−DG+1
k=0 δ2

kφtk,jφ
T
tk,j

}
. Substituting this inequality, (41)

and (43) into (40), we have the following result for the estimation error:

‖ϑ̃tn+1‖2 = O

(∑n
k=0 δ4

k + log Rn

λn
min

)
a.s.. (44)

By Assumptions 3.7 and 3.9, the results of the theorem can be obtained.
Comparing with [38, 40], we take the approximation deviation into account in the per-

formance analysis of the algorithm. Thus, the upper bound on the estimation error of the
distributed LS algorithm based on sampled data consists of two parts: The approximation
deviation and the error caused by stochastic noises. We remark that convergence results are
obtained in this paper for stochastic regression vectors without using PE information conditions
or relying on independency assumptions of regressors or inputs.

3.2 Analysis of the Regret

In this subsection, we will study the adaptive prediction ability of the distributed LS algo-
rithm based on sampled data. For this purpose, we introduce the accumulative regret of the
proposed algorithm, which is one of important metrics to evaluate the performance of adaptive
learning and estimation algorithms.
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For i ∈ {1, · · · , N}, we denote ytk,i = ytk+1,i − ytk,i. By the fact E[(vtk+1,i − vtk,i)|Ftk
] = 0,

we see that the best predictor to ytk,i is E[ytk,i|Ftk
] = E[(

∫ tk+1

tk
φT

s,ids · θ)|Ftk
]. Since the

parameter θ is unknown, we replace θ by the estimate θtk,i and obtain an adaptive predictor
ŷtk,i as follows:

ŷtk,i = δkφT
tk,iθtk,i, (45)

The regret Rtk,i of the sensor i can be defined as the difference between the best predictor and
the adaptive predictor. By φtk,i ∈ Ftk

, Rtk,i satisfies the following equation:

Rtk,i =
{
E[ytk,i|Ftk

] − ŷtk,i

}2
=
{

E

[(∫ tk+1

tk

φT
s,ids · θ − δkφT

tk,iθtk,i

)∣∣∣∣Ftk

]}2

, (46)

The following theorem provides the upper bound on the accumulative regret of the adaptive
predictor (45).

Theorem 3.14 Under Assumption 3.1 and Assumptions 3.5, 3.7, the accumulative regret
satisfies

N∑
i=1

n∑
k=0

Rtk,i = O(log Rn) a.s.,

provided that δ2
kΨ

T
tk

Ptk
Ψtk

= O(1).

Proof By using Jensen inequality and (46), we have the following inequality:

N∑
i=1

n∑
k=0

Rtk,i =
N∑

i=1

n∑
k=0

{
E

[(∫ tk+1

tk

φT
s,ids · θ − δkφT

tk,iθtk,i

)∣∣∣∣Ftk

]}2

≤
N∑

i=1

n∑
k=0

E

[(∫ tk+1

tk

φT
s,ids · θ − δkφT

tk,iθtk,i

)2∣∣∣∣Ftk

]
.

(47)

By the fact that atk

(
IN + δ2

kΨ
T
tk

Ptk
Ψtk

)
= IN , we have

Ψtk
ΨT

tk
= Ψtk

atk
ΨT

tk
+ Ψtk

(δ2
katk

ΨT
tk

Ptk
Ψtk

)ΨT
tk

. (48)

By (18), (41) and (48), we can obtain that

N∑
i=1

n∑
k=0

Rtk,i ≤
N∑

i=1

n∑
k=0

E

[(
ΞT

tk+1,iθ + δkφT
tk

θ̃tk

)2∣∣∣∣Ftk

]

≤
N∑

i=1

n∑
k=0

E

[
2(ΞT

tk+1,iθ)
2 + 2δ2

kθ̃T
tk,iφtk,iφ

T
tk,iθ̃tk,i

∣∣∣∣Ftk

]

=
n∑

k=0

E

[
2(ΞT

tk+1
ϑ)2 + 2δ2

kϑ̃T
tk

Ψtk
ΨT

tk
ϑ̃tk

∣∣∣∣Ftk

]

≤L2

2
‖ϑ‖2

n∑
k=0

δ4
k + 2

n∑
k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

+ 2
n∑

k=0

δ2
kϑ̃T

tk
Ψtk

(δ2
katk

ΨT
tk

Ptk
Ψtk

)ΨT
tk

ϑ̃tk

=O

( n∑
k=0

δ4
k +

n∑
k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk

)
,

(49)
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where φtk
∈ Ftk

and the condition δ2
kΨ

T
tk

Ptk
Ψtk

= O(1) are used. From Theorem 3.12, (41)
and (43), we know that

n∑
k=0

δ2
kϑ̃T

tk
Ψtk

atk
ΨT

tk
ϑ̃tk = O

( n∑
k=0

(ΞT
tk+1

ϑ)2 + log |P−1
tn+1

|
)

= O

( n∑
k=0

δ4
k + log Rn

)
, a.s..

Substituting the above equation into (49), we can obtain the desired result of the theorem.

Remark 3.15 For a typical case where the regression vectors are bounded, we have Rn =
O(n). By Theorem 3.14, the averaged accumulative regret satisfies 1

N
∑n

k=0 δk

∑N
i=1

∑n
k=0 Rtk,i

→ 0.

4 Simulation Results

In this section, we conduct computer simulations to verify theoretical results obtained in
this paper.

Consider a network consisting of three sensors whose dynamics obey the equation (1). We
set the 3-dimensional regression vectors φt,i (i = 1, 2, 3) as follows:

φt,1 =
[
1 + sin

(
2π

3
t

)
, 0, 0

]T
, φt,2 =

[
0, 2 + cos

(
2π

3
t

)
, 0
]T

, φt,3 =
[
0, 0, 1 + sin

(
4π

3
t

)]T
.

It can be easily verified that Assumption 3.5 holds. The noises {vt,i, t ≥ 0}, i = 1, 2, 3 in (1)
are Wiener processes. We take the sampling interval δk as follows:

δk =
0.2

2
⌈
log

3� k
500 �+4

4

⌉
−1

, (50)

where �·� is a round-up operator. It is clear that
∑n

k=0 δ2
k = ∞ and

∑n
k=0 δ4

k = O
(∑n

k=0
1

22k

)
<

∞. Thus, Assumption 3.7 holds. Besides, we see that the three sensors can cooperate to
satisfy Assumption 3.9 even though none of the regression signals {φt,i, i = 1, 2, 3} satisfy the
condition (17). The parameter vector to be estimated is taken as θ = (3, 4, 5)T, and the initial
values of the estimate are taken as

θ0,1 = (−1, 0, 0)T, θ0,2 = (0,−1, 0)T, θ0,3 = (0, 0,−1)T.

The initial covariance matrix is taken as

P0,1 = P0,2 = P0,3 =

⎛
⎜⎜⎝

3 0 0

0 3 0

0 0 3

⎞
⎟⎟⎠ .

First, we consider the cooperative distributed LS algorithm proposed in this paper and the
non-cooperative LS algorithm based on sampled data in [39], and the mean square errors (MSEs)
(averaged over 150 runs) of these two algorithms are shown in Figure 1. From Figure 1, we see
that MSEs of the distributed LS algorithm based on sampled data quickly converge to 0, while



DISTRIBUTED LS ALGORITHM BASED ON SAMPLED DATA 625

MSEs of the non-cooperative LS algorithm can not. To some extent, this simulation example
can demonstrate the cooperative effect of sensor networks: Multiple sensors can cooperate to
finish the estimation task by information exchange even though none of them can due to the
lack of adequate excitation.

K

Figure 1 MSEs of the non-cooperative LS algorithm based on sampled data and dis-
tributed LS algorithm in this paper (Algorithm 1)

Then, we compare the performance of the distributed LS algorithm with constant and time-
varying sampling intervals. The time-varying sampling interval is taken according to (50),
and the constant sampling intervals are taken as δk = 0.4, 0.6, 0.8, and 1. Figure 2 shows
MSEs (averaged over 150 runs) of the algorithm in these two settings (constant and time-
varying sampling intervals). It is clear that MSE of the algorithm with time-varying sampling
interval gradually converges to 0 as the iteration step k goes to infinity. However, MSEs of
the algorithm with constant sampling intervals can not converge to 0. Figure 3 shows the
average accumulative regret 1

Nn

∑N
i=1

∑n
k=0 Rtk,i (averaged over 150 runs) in the above two

settings (constant and flexible sampling intervals). Compared with the average accumulative
regret under fixed constant sampling intervals, the average accumulative regret under flexible
sampling intervals has better performance.

K

M
S

E

flexible δk 
fixed sampling period δk = 0.02

fixed sampling period δk = 0.05

fixed sampling period δk = 0.4

fixed sampling period δk = 0.6

fixed sampling period δk = 0.8

fixed sampling period δk = 1

Figure 2 MSEs of distributed LS algorithm with constant and time-varying
sampling intervals
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K

flexible δk 
fixed sampling period δk = 0.02

fixed sampling period δk = 0.05

fixed sampling period δk = 0.4

fixed sampling period δk = 0.6

fixed sampling period δk = 0.8

fixed sampling period δk = 1

Figure 3 The average accumulative regrets of distributed LS algorithm with constant
and time-varying sampling intervals

5 Concluding Remarks

For the continuous-time stochastic regression model described by stochastic differential equa-
tions, we proposed a distributed LS algorithm based on the sampled data over sensor networks
to cooperatively estimate the unknown parameter vector. Under the cooperative non-persistent
information condition, we established almost sure convergence of the proposed algorithm with
properly sampling time interval. We also provided the upper bound on the accumulative regret
of the adaptive predictor based on the proposed distributed LS algorithm without any excita-
tion condition. Simulation results were conducted to illustrate the cooperative effect of multiple
sensors. Some interesting problems deserve further investigation, e.g., how to design a suitable
distributed algorithm based on sampled data to estimate time-varying parameters, and how to
integrate the distributed control with distributed estimation algorithms.
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[29] Pan S, González R A, Welsh J S, et al., Consistency analysis of the simplified refined instrumental

variable method for continuous-time systems, Automatica, 2020, 113: 108767.

[30] Greblicki W, Continuous-time hammerstein system identification from sampled data, IEEE

Transactions on Automatic Control, 2006, 51(7): 1195–1200.

[31] Yuan C and Wang C, Design and performance analysis of deterministic learning of sampled-data

nonlinear systems, Science China Information Sciences, 2014, 57(3): 1–18.

[32] Ortega R, Bobtsov A, and Nikolaev N, Parameter identification with finite-convergence time

alertness preservation, IEEE Control Systems Letters, 2021, 6: 205–210.

[33] Guo L, Time-Varying Stochastic Systems, Stability and Adaptive Theory, 2nd Edition, Science

Press, Beijing, 2020.

[34] Godsil C and Royle G F, Algebraic Graph Theory, Springer-Verlag, Berlin, 2014.

[35] Johansson R, Identification of continuous-time models, IEEE Transactions on Signal Processing,

1994, 42(4): 887–897.

[36] Oksendal B, Stochastic Differential Equations: An Introduction with Applications, Springer,

Berlin, 2013.

[37] Zhang J, Zhao C, and Guo L, On PID control theory for nonaffine uncertain stochastic systems,

Journal of Systems Science & Complexity, 2023, 36(1): 165–186.

[38] Hu X L and Welsh J S, Continuous-time model identification from filtered sampled data: Error

analysis, IEEE Transactions on Automatic Control, 2020, 65(10): 4005–4015.

[39] Zhu X, Gan D, and Liu Z, Performance analysis of least squares of continuous-time model based

on sampled data, IEEE Control Systems Letters, 2022, 6: 3086–3091.

[40] Hu X L and Welsh J S, Bias analysis of continuous-time model identification from filtered sample

output data, Proceedings of the IEEE 51st IEEE Conference on Decision and Control, Maui,

2012, 208–213.


