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 A B S T R A C T

Distributed adaptive estimation techniques allow agents in multi-agent networks to cooperatively estimate 
system parameters, but directly sharing information among agents increases the risk of privacy breaches. 
In this paper, we consider the problem of estimating unknown time-varying parameters in a discrete-time 
stochastic regression model over multi-agent networks, with a focus on protecting data privacy. We propose a 
privacy-preserving distributed consensus-based normalized least mean square algorithm that protects the local 
information of agents by obfuscating the information exchanged. The proposed algorithm achieves rigorous 
differential privacy for sensitive information by incorporating persistent additive noise to the exchanged 
estimates. Furthermore, we analyze the stability of the proposed algorithm and establish the upper bound of 
the estimation error without assuming the independency or stationarity of the regression data. Some simulation 
results are presented to validate the effectiveness of our theoretical findings.
1. Introduction

1.1. Background

With the development of sensing and communication technologies, 
distributed estimation or filtering algorithms based on multi-agent 
networks have received widespread attention [1–4]. The agents within 
networks are often limited in processing and computing resources, but 
they can cooperatively accomplish global tasks through information 
interaction. Distributed parameter estimation not only offers a robust 
alternative to centralized methods that rely on fusion centers, but also 
makes efficient use of network resources by distributing computational 
and communication burdens among agents. In numerous theoretical 
studies concerning distributed parameter estimation, a widely recog-
nized classical model is the discrete linear regression model given by 

𝑦𝑘,𝑖 = 𝑥⊤𝑘,𝑖𝜉𝑘 + 𝑑𝑘,𝑖, 𝑘 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}, (1)

where 𝑦𝑘,𝑖 ∈ R is the local output, 𝑥𝑘,𝑖 ∈ R𝑚 is the regression vector, 
𝑑𝑘,𝑖 ∈ R is the random system disturbance, all associated with agent 

I This work was supported in part by the Natural Science Foundation of Tianjin under Grant 24JCQNJC01930, the National Key Research and Development 
Program of China under Grant 2022YFB3305600 and Sichuan Science and Technology Program under Grant 2025ZNSFSC1511.
∗ Corresponding author.
E-mail addresses: chenshuning@amss.ac.cn (S. Chen), gandie@nankai.edu.cn (D. Gan), syxie@uestc.edu.cn (S. Xie), jhlu@iss.ac.cn (J. Lü).

𝑖 at time 𝑘, and 𝜉𝑘 ∈ R𝑚 is the unknown parameter to be estimated. 
Agents are designed to be interconnected to acquire and process the 
local information from neighbors to finish a common estimation task.

1.2. Related works

A lot of distributed algorithms have been designed for estimating 
time-invariant parameters [1,5–8] or time-varying parameters [9–12]. 
In order to investigate the theoretical performance of the algorithms, 
many contributions require the conditions about the regression data. 
Some works focus on the performance analysis of distributed param-
eter estimation algorithms using deterministic or even time-invariant 
regressors [1,5,9,13], while the stability of some other distributed adap-
tive filtering algorithms is established based on the independence or 
stationarity and ergodicity of stochastic regressors [6,10,14,15]. How-
ever, as noted in [16], complex dynamic systems with uncertainty often 
contain various feedback loops, and the properties of observed data are 
usually determined by complex dynamic equations. Therefore, these 
systems are far from satisfying the traditional statistical assumptions 
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of independence, stationarity, and ergodicity. To relax the stringent 
conditions on random regression vectors to non-stationary scenarios, 
some progress has also been made in distributed adaptive estimation 
and filtering algorithms [7,8,11,12].

It is worth noting that there are often attackers in the multi-agent 
network who use various available information in the network to 
infer underlying private data. However, in the aforementioned works, 
agents directly transmit their local estimates to neighbors in the public 
network, which can lead to significant privacy breaches when the target 
parameter vector contains sensitive information. For instance, as shown 
in [17], private ratings and transactions of individuals on commercial 
websites can be successfully deduced by leveraging information from 
public recommendation systems. This highlights the necessity for de-
veloping distributed estimation mechanisms that preserve privacy. A 
number of privacy-preserving algorithms have already been proposed 
in fields such as distributed optimization [18–20], distributed consen-
sus [21,22], and federated learning [23–26], among which commonly 
used privacy protection techniques are homomorphic encryption and 
adding artificial noise, etc. Homomorphic encryption [18,21,25,27] 
of privacy data in the local computation process can highly protect 
privacy, but it introduces significant computational overhead, which 
is impractical for mobile devices [28]. In contrast, adding noise to the 
data transmitted between agents to protect privacy is simpler and more 
feasible [19,20,23,24,26]. Differential privacy (DP) is a mathematical 
concept that guarantees statistical indistinguishability for individual 
inputs by adding noises [29].

Integrating DP with distributed parameter estimation may provide 
strong privacy guarantees while maintaining high estimation perfor-
mance. As far as we know, there are few results studying the theoretical 
performance analysis of the privacy-preserving distributed estimation 
algorithms [26,30–33]. In [26], the least-square procedure was applied 
for the federated estimation problem. However, this work was only 
concerned with the analysis of static databases, failing to work with dy-
namic, time-varying data streams. Le Ny and Papps in [30] integrated 
DP mechanisms with distributed Kalman filtering to ensure privacy 
protection performance and further considered the scenario with con-
tinual observation data, but the results were derived on deterministic 
regressors. Wang et al. [33] imposed persistent excitation conditions 
on regressors and utilized DP theory to perform privacy-preserving 
distributed estimation of time-invariant parameters. However, agents 
may need to perform estimation in a constantly changing environment, 
these works [26,32,33] will lose efficacy when dealing with dynamic 
systems where parameters change over time. Overall, the existing 
methods all have limitations on estimating time-varying parameters 
or assuming strong conditions for the regression data, and therefore 
cannot be widely applied to practical systems.

1.3. Challenges and contributions

In this paper, we investigate unknown time-varying parameter es-
timation for a discrete-time stochastic regression model over multi-
agent networks. We add noise to the local estimates exchanged be-
tween agents to prevent potential attackers from recovering local sen-
sitive data through the publicly exchanged estimates. Then, a privacy-
preserving distributed adaptive estimation algorithm is proposed and 
the privacy analysis is guaranteed by DP theory. We introduce a co-
operative excitation condition for non-stationary regressors and theo-
retically establish the upper bound of the tracking error in the case of 
time-varying parameters.

Notably, the impact of the additional noise introduced by privacy 
protection will accumulate over time, and coupled with the random-
ness brought by non-independent and non-stationary regressors, this 
brings significant challenges to theoretical analysis. We address these 
challenges by employing algebraic graph theory and stochastic stability 
theory to establish the stable properties of some auxiliary matrices 
(based on our previous work [11]), thereby further overcoming the 
2 
technical difficulties. It is worth noting that our results are applicable 
to real-world systems, unlike the theoretical findings in [26,30,32,33], 
which either rely on assumptions of independence or stationarity of 
the regression signals, or focus solely on estimating time-invariant 
parameters.

The remainder of this paper is organized as follows: Section 2 
details the design of our proposed algorithm, whose privacy analysis 
is presented in Section 3. Section 4 introduces essential definitions 
and assumptions. Section 5 presents the stability analysis of proposed 
algorithm. Experimental results are displayed in Section 6, followed by 
some concluding remarks in Section 7.

2. Problem formulation

2.1. Some preliminaries

2.1.1. Notations
For an 𝑛 × 𝑚-dimensional real matrix 𝐴, we use ‖𝐴‖ to represent 

the Euclidean norm, i.e., ‖𝐴‖ 𝛥
= {𝜆max(𝐴𝐴⊤)}

1
2 , where 𝜆max(⋅) denotes 

the largest eigenvalue of the matrix, and (⋅)⊤ denotes the transpose of 
the matrix. Correspondingly, the smallest eigenvalue of the matrix is 
denoted as 𝜆min(⋅). For an 𝑚-dimensional real vector 𝑥, the 𝑝-norm of 𝑥 is 
defined as ‖𝑥‖𝑝 = (

∑𝑚
𝑖=1 |𝑥𝑖|

𝑝)1∕𝑝, with 𝑥𝑖 being the 𝑖th element of 𝑥 and 
1 ≤ 𝑝 < ∞. If there is no special indication, ‖⋅‖ refers to 2-norm (also the 
Euclidean norm). The symbol 𝟏𝑛 represents an 𝑛-dimensional column 
vector with all elements equal to 1, and 𝐼𝑚 denotes the 𝑚-dimensional 
identity matrix.

For a matrix sequence {𝐴𝑘, 𝑘 ≥ 0} and a positive scalar sequence 
{𝑎𝑘, 𝑘 ≥ 0}, if there exists a positive constant 𝐶, such that ‖𝐴𝑘‖ ≤ 𝐶𝑎𝑘
holds for all 𝑘 ≥ 0, then we say 𝐴𝑘 = 𝑂(𝑎𝑘).

2.1.2. Graph theory
For a multi-agent network, we can construct a corresponding topol-

ogy  = { ,  ,} to show the information interaction between agents. 
Take an 𝑛-agent network for instance, let the node set  = {1, 2,… , 𝑛}. 
The elements in the adjacency matrix  = [𝑎𝑖𝑗 ]1≤𝑖,𝑗≤𝑛 represent the 
weight of information interaction between agents. If there exists com-
munication from agent 𝑖 to agent 𝑗, then the edge (𝑖, 𝑗) belongs to the 
edge set  and 𝑎𝑖𝑗 > 0, otherwise 𝑎𝑖𝑗 = 0. The neighbor set of agent 𝑖 is 
denoted as 𝑖 = {𝑗|(𝑗, 𝑖) ∈ }. In this paper, we suppose the adjacency 
matrix is symmetric and stochastic, i.e., ∑𝑛

𝑗=1 𝑎𝑖𝑗 =
∑𝑛

𝑗=1 𝑎𝑗𝑖 = 1 holds 
for any 𝑖 ∈ {1, 2,… , 𝑛}.

2.2. Algorithm design

In this paper, we consider using the discrete-time stochastic re-
gression model (1) to estimate the time-varying parameter 𝜉𝑘, whose 
variation at time 𝑘 can be denoted as: 
𝛾𝜔𝑘 ≜ 𝜉𝑘 − 𝜉𝑘−1, 𝑘 ≥ 1, (2)

where 𝛾 is a non-negative scalar that characterizes the rate of parameter 
variation, and 𝜔𝑘 is an 𝑚 × 1-dimensional vector. In particular, when 
𝛾 = 0, it degenerates to the time-invariant parameter case.

For the linear regression model (1), traditional distributed adaptive 
filtering algorithms [5,15], including Kalman filtering, least squares, 
and least mean squares methods, pose privacy risks by potentially ex-
posing sensitive data {𝑦𝑘,𝑖} during the process of estimating parameters 
{𝜉𝑘}. This vulnerability arises because these methods typically require 
sharing true intermediate results or updated parameter estimates across 
network nodes, which may inadvertently reveal information about the 
underlying private data to potential attackers [30]. For example, in 
smart grids, 𝑦𝑘,𝑖 may represent the real-time electricity consumption of 
households or enterprises; in cooperative guidance systems, 𝑦𝑘,𝑖 may 
indicate the position of missiles or launch sites, both of which are 
sensitive data that should not be disclosed to attackers.  To tackle this 
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Algorithm 1 𝐾-step Distributed Privacy-Preserving Normalized Least 
Mean Squares Algorithm
Data: {𝑦𝑘,𝑖, 𝑥𝑘,𝑖}𝑛𝑖=1, 𝑘 = 0, 1, ..., 𝐾
Result: {𝜉𝑘+1,𝑖}𝑛𝑖=1, 𝑘 = 0, 1, ..., 𝐾
Set instant 𝑘 = 0;
Initialize estimates 𝜉0,𝑖 ∈ R𝑚 for each agent 𝑖 ∈ {1, 2,⋯ , 𝑛}.
while 𝑘 ≤ 𝐾 do
 for agent 𝑖 = 1 to 𝑛 do
 Step 1. Add Laplacian noise to local estimates: 

𝜉♯𝑘,𝑖 = 𝜉𝑘,𝑖 + 𝜂𝑘,𝑖, (3)

 with 𝜂𝑘,𝑖 ∼ Lap(0, 𝜎, 𝑚, 1);
 Step 2. Transmit 𝜉♯𝑘+1,𝑖 to all neighbors in 𝑖.
 Step 3. Update estimates with local and neigh-
 bors’ noised information 𝜉♯𝑘,𝑙:

𝜉𝑘+1,𝑖 = 𝜉♯𝑘,𝑖+𝜇

{

𝑥𝑘,𝑖
1 + ‖𝑥𝑘,𝑖‖2

(𝑦𝑘,𝑖 − 𝑥⊤𝑘,𝑖𝜉
♯
𝑘,𝑖)

− 𝜈
∑

𝑙∈𝑖

𝑎𝑙𝑖(𝜉
♯
𝑘,𝑖 − 𝜉♯𝑘,𝑙)

⎫

⎪

⎬

⎪

⎭

, (4)

 where 𝜇 ∈ (0, 1) is the step-size, 𝜈 ∈ (0, 1) is
 a weighting constant, and 𝑎𝑙𝑖 is the 𝑙th row 𝑖th
 column element of adjacency matrix ;
 𝑘 = 𝑘 + 1;

problem, we propose a distributed privacy-preserving adaptive filtering 
algorithm (see Algorithm 1).

To safeguard the local privacy-sensitive data from potential leakage 
due to the exchange of estimates with neighbors, a Laplacian noise term 
is introduced to the estimates. Specifically, the noisy estimate 𝜉♯𝑘,𝑖 is 
generated as:
𝜉♯𝑘,𝑖 = 𝜉𝑘,𝑖 + Lap (0, 𝜎, 𝑚, 1) ,

with the notation Lap(0, 𝜎, 𝑚, 1) represents an 𝑚×1-dimensional matrix 
with each element i.i.d. to Laplacian distribution with the mean value 
0 and the scale parameter 𝜎. Then, each agent transmits the perturbed 
estimates to its neighboring nodes. By sharing these inaccurate (noisy) 
estimates rather than the true values, the attack will fail to infer the 
sensitive data, as shown in Section 3. After that, each agent updates 
the local estimates for the next instant using local and neighbors’ noisy 
estimates. Here we adopt a consensus-based normalized least mean 
squares algorithm (4), whose right-hand side can be regarded as being 
composed of two components. The first part is the usual (normalized) 
LMS update mechanism which aims to reduce the prediction error, 
while the second part tries to minimize the weighted distance between 
estimates of the agent 𝑖 and its neighboring agents as explained in [10]. 
This collaborative approach leverages the perturbed information to 
refine future predictions while maintaining privacy protection.

2.3. Recursive error equation

Our distributed Privacy-Preserving (PP)-NLMS algorithm is designed
to protect the privacy of the output data {𝑌𝑘}𝐾𝑘=0 as well as estimate the 
unknown time-varying parameter vector {𝜉𝑘}. Consequently, balancing 
the level of privacy protection and the performance of parameter 
estimation is a critical issue.

In order to centrally measure the estimation error of each agent, we 
further introduce the following series of notations. 
𝑌𝑘 = [𝑦𝑘,1, 𝑦𝑘,2,… , 𝑦𝑘,𝑛]⊤ ∈ R𝑛 (5)
𝐷 = [𝑑 ,… , 𝑑 ]⊤ ∈ R𝑛,
𝑘 𝑘,1 𝑘,𝑛

3 
𝑋𝑘 = diag{𝑥𝑘,1,… , 𝑥𝑘,𝑛} ∈ R𝑚𝑛×𝑛,

𝐻𝑘 = col{𝜂𝑘,1,… , 𝜂𝑘,𝑛} ∈ R𝑚𝑛, (6)
𝛺𝑘 = 𝟏𝑛 ⊗𝜔𝑘 ∈ R𝑚𝑛,

𝐿𝑘 = diag
{

𝑥𝑘,1
1 + ‖𝑥𝑘,1‖2

,… ,
𝑥𝑘,𝑖

1 + ‖𝑥𝑘,𝑛‖2

}

∈ R𝑚𝑛×𝑛,

𝛯𝑘 = col{𝜉𝑘,1,… , 𝜉𝑘,𝑛} ∈ R𝑚𝑛,

𝛯♯
𝑘 = col{𝜉♯𝑘,1,… , 𝜉♯𝑘,𝑛} ∈ R𝑚𝑛,

𝛯𝑘 = 𝟏𝑛 ⊗ 𝜉𝑘 ∈ R𝑚𝑛,

𝛯𝑘 = 𝛯𝑘 − 𝛯𝑘 ∈ R𝑚𝑛, 𝛯♯
𝑘 = 𝛯♯

𝑘 − 𝛯𝑘 ∈ R𝑚𝑛,

L = (𝐼𝑛 −)⊗ 𝐼𝑚 ∈ R𝑚𝑛×𝑚𝑛,

𝐺𝑘 = 𝐿𝑘𝑋
⊤
𝑘 + 𝜈L ∈ R𝑚𝑛×𝑚𝑛.

Then, the following compact iteration can be derived by (3) and (4) 
that
{

𝛯♯
𝑘 = 𝛯𝑘 +𝐻𝑘,

𝛯𝑘+1 = 𝛯♯
𝑘 + 𝜇𝐿𝑘(𝑌𝑘 −𝑋⊤

𝑘 𝛯
♯
𝑘) − 𝜇𝜈L𝛯♯

𝑘.

Since L𝛯𝑘 ≡ 0, the estimation error 𝛯𝑘+1 can be obtained further by 
(1) and (2) that 
𝛯𝑘+1 = 𝛯♯

𝑘+1 −𝐻𝑘+1

=
(

𝐼𝑚𝑛 − 𝜇𝐺𝑘
)

𝛯♯
𝑘 + 𝜇𝐿𝑘𝐷𝑘 − 𝛾𝛺𝑘+1

=
(

𝐼𝑚𝑛 − 𝜇𝐺𝑘
)

(𝛯𝑘 +𝐻𝑘) + 𝜇𝐿𝑘𝐷𝑘 − 𝛾𝛺𝑘+1. (7)

In the next section, we will first analyze the privacy protection perfor-
mance of the distributed PP-NLMS algorithm.

3. Privacy analysis

Before evaluating the privacy protection level of our algorithm, it 
is necessary to introduce some key concepts of differential privacy. 
Differential privacy provides a mathematical framework designed to 
protect individual privacy during data analysis and sharing processes. 
It ensures that the output of an algorithm remains statistically similar 
whether or not any specific individual’s data is included.

Definition 1 (𝛿-adjacency). For any given 𝛿 > 0, two vectors 𝑌𝑘 =
[𝑦𝑘,1, 𝑦𝑘,2,… , 𝑦𝑘,𝑛]⊤ and 𝑌 ′

𝑘 = [𝑦′𝑘,1, 𝑦
′
𝑘,2,… , 𝑦′𝑘,𝑛]

⊤ are called 𝛿-adjacent 
if there exists some 𝑖0 ∈  such that for any 𝑘 ≥ 0, 

𝑦𝑘,𝑖 = 𝑦′𝑘,𝑖,∀𝑖 ≠ 𝑖0, ‖𝑦𝑘,𝑖0 − 𝑦′𝑘,𝑖0‖1 ≤ 𝛿. (8)

It suggests that two signal sequences are considered ‘‘adjacent’’ if 
the measurement of only one agent is changed.

Definition 2 (Sensitivity [30]). For the given 𝛿-adjacent relation (8), 
define the sensitivity of an output map 𝑔(⋅) at 𝑘th iteration as
𝑆(𝑘) = sup

𝑌𝑘 ,𝑌 ′
𝑘 are 𝛿−adjacent

‖

‖

‖

𝑔
(

𝑌𝑘
)

− 𝑔
(

𝑌 ′
𝑘
)

‖

‖

‖1
.

Remark 1.  The sensitivity of an output map 𝑔(⋅) measures the 
maximum possible change in the output of 𝑔(⋅) when the data of a single 
agent is altered in 𝑌𝑘. In this paper, 𝑔(⋅) corresponds to the recursive 
estimation Eq. (4), which can be represented as:
𝑔(𝑌𝑘) = 𝛯̂𝑘+1 = (𝐼 − 𝜇𝐺𝑘)𝛯̂

♯
𝑘 + 𝜇𝐿𝑘𝑌𝑘.

Lemma 1.  For given 𝛿-adjacency relation (8), the sensitivity of the 
distributed NLMS algorithm at each iteration 𝑘 satisfies
𝑆(𝑘) ≤ 𝜇𝛿.
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Proof.  By Remark  1, we can get 𝑔 (𝑌𝑘
)

−𝑔
(

𝑌 ′
𝑘
)

= 𝜇𝐿𝑘
(

𝑌𝑘 − 𝑌 ′
𝑘
)

. Notice 
the fact that ‖𝐿𝑘‖ ≤ 1, thus for two 𝛿-adjacency vectors, it follows
‖

‖

‖

𝜇𝐿𝑘
(

𝑌𝑘 − 𝑌 ′
𝑘
)

‖

‖

‖1
≤ 𝜇 ‖

‖

‖

𝑌𝑘 − 𝑌 ′
𝑘
‖

‖

‖1
≤ 𝜇𝛿,

which completes the proof.  ■

Assume the attackers can observe all communication information 
between nodes, i.e. {𝛯̂♯

𝑘}
𝐾
𝑘=1, and based on this, they aim to infer 

the privacy data {𝑌𝑘}𝐾−1
𝑘=0 . From Eqs. (3) and (4), this antagonistic 

mechanism at instant 𝑘 can essentially be described by the mapping 
(𝑘) ∶ R𝑛 × R𝑛𝑚 ↦ R𝑛𝑚 with
(𝑘) (𝑌𝑘,𝐻𝑘+1

)

≜ 𝑔(𝑌𝑘) +𝐻𝑘+1

= (𝐼 − 𝜇𝐺𝑘)𝛯
♯
𝑘 + 𝜇𝐿𝑘𝑌𝑘 +𝐻𝑘+1. (9)

The efficacy of this privacy protection is critically dependent on the 
characteristics of the added Laplace noise 𝐻𝑘, particularly its scale 
parameter 𝜎. Then, the differential privacy of Algorithm 1 is defined 
as follows.

Definition 3 (Differential Privacy [33]). Given 𝜀 > 0, a randomized 
mechanism (𝑘) is called 𝜀-differential privacy if for any 𝛿-adjacent 
vectors 𝑌𝑘 and 𝑌 ′

𝑘 , any stochastic noise 𝐻𝑘+1, and any set of outputs 
 ⊆ Range((𝑘)),

Pr
{

(𝑘) (𝑌𝑘,𝐻𝑘+1
)

∈ 
}

≤ 𝑒𝜀Pr
{

(𝑘) (𝑌 ′
𝑘 ,𝐻𝑘+1

)

∈ 
}

holds. Here, Range((𝑘)) denotes the range of the mapping (𝑘), and 
Pr{⋅} denotes the probability.

Remark 2.  Note that the constant 𝜀 measures the privacy level of the 
randomized mapping (𝑘); specifically, a smaller 𝜀 indicates a higher 
privacy level. As mentioned in [30], 𝜀 is typically chosen to be a small 
constant, such as 𝜀 = 0.1 or perhaps even ln 2 or ln 3.

Theorem 1.  For given 𝜀 > 0, each iteration of Algorithm 1 satisfies 
𝜀-differential privacy if 

𝜎 ≥ 𝜇𝛿
𝜀
. (10)

Proof.  Here, we analyze the impact of 𝐻𝑘+1 on the output distribution 
when the sensitive data 𝑌𝑘 changes to a 𝛿-adjacent 𝑌 ′

𝑘 , while keeping 
all other random variables fixed. For two 𝛿-adjacent vectors 𝑌𝑘 and 𝑌 ′

𝑘 , 
note that (𝑘) (𝑌𝑘,𝐻𝑘+1

) and (𝑘) (𝑌 ′
𝑘 ,𝐻𝑘+1

) share the same range, 
where each element of 𝐻𝑘+1 is an independent random variable fol-
lowing a Laplacian distribution with mean 0 and scale parameter 𝜎. 
Considering fixed 𝑌𝑘, 𝑌 ′

𝑘 , and the terms constructed from the regressors 
𝑋𝑘, and denoting the probability density function of 𝐻𝑘+1 as 𝑓 (⋅), we 
have:
𝑓
(

(𝑘) (𝑌𝑘,𝐻𝑘+1
)

= 𝑍
)

𝑓
(

(𝑘)
(

𝑌 ′
𝑘 ,𝐻𝑘+1

)

= 𝑍
)

=
𝑓
(

𝐻𝑘+1 = 𝑍 − (𝐼 − 𝜇𝐺𝑘)𝛯
♯
𝑘 − 𝜇𝐿𝑘𝑌𝑘

)

𝑓
(

𝐻𝑘+1 = 𝑍 − (𝐼 − 𝜇𝐺𝑘)𝛯
♯
𝑘 − 𝜇𝐿𝑘𝑌 ′

𝑘

)

=
exp

(

− 1
𝜎
‖

‖

‖

𝑍 − (𝐼 − 𝜇𝐺𝑘)𝛯
♯
𝑘 − 𝜇𝐿𝑘𝑌𝑘

‖

‖

‖1

)

exp
(

− 1
𝜎
‖

‖

‖

𝑍 − (𝐼 − 𝜇𝐺𝑘)𝛯
♯
𝑘 − 𝜇𝐿𝑘𝑌 ′

𝑘
‖

‖

‖1

)

≤ exp
( 1
𝜎
𝑆(𝑘)

)

≤ exp
(

𝜇𝛿
𝜎

)

.

Thus, for any measurable set of  ⊆ 𝑅𝑎𝑛𝑔𝑒((𝑘)(𝑌𝑘,𝐻𝑘+1)), it holds

Pr{(𝑘)(𝑌𝑘,𝐻𝑘+1) ∈ } = ∫
𝑓
(

(𝑘)(𝑌𝑘,𝐻𝑘+1) = 𝑍
)

𝑑𝑍

≤ exp
(

𝜇𝛿
𝜎

)

∫
𝑓
(

(𝑘)(𝑌 ′
𝑘 ,𝐻𝑘+1) = 𝑍

)

𝑑𝑍

≤ 𝑒𝜀Pr{(𝑘)(𝑌 ′,𝐻 ) ∈ },
𝑘 𝑘+1

4 
which means each iteration of Algorithm 1 satisfies 𝜀-differential pri-
vacy.  ■

After obtaining the differential privacy of each iteration, we intro-
duce the following lemma to get the differential privacy of the entire 
𝐾-step algorithm.

Lemma 2 (See Theorem 3.14 in [34]). Consider a sequence of mechanisms 
{(𝑘)}𝐾𝑘=1 that all preserve 𝜀-differential privacy. If 𝐾 (𝑌 ) is designed to 
be 𝐾 (𝑌 ) = ((0)(𝑌 ),… ,(𝐾−1)(𝑌 )), then 𝐾 (𝑌 ) is 𝐾𝜀-differentially 
private.

As a result of the above lemma combining Theorem  1, the following 
corollary can be easily derived. 

Corollary 1.  For given 𝜀 > 0, the 𝐾-step Algorithm 1 satisfies 𝐾𝜀-
differential privacy if 𝜎 ≥ 𝜇𝛿

𝜀 .

In Theorem  1 and Corollary  1, we give the relationship between the 
scale parameter 𝜎 of the added noise, the step-size 𝜇 and the privacy 
index 𝜀. From (10) it follows that the scalar parameter 𝜎 of the added 
noise is inversely proportional to privacy index 𝜀. In other words, 
each agent preserves stronger privacy when the added noise is more 
dispersive. However, this can have a detrimental effect on parameter 
estimation, thus necessitating further stability analysis of the proposed 
algorithm.

4. Definitions and assumptions

Due to the randomness of regression vector {𝑥𝑡,𝑖, 𝑡 ≥ 0}𝑛𝑖=1, we first 
give some necessary definitions and assumptions on random matrices 
before going straight to the performance discussion.

4.1. Definitions

Definition 4 ([35]). A random matrix sequence {𝐴𝑡, 𝑡 ≥ 0} defined 
on the basic probability space (𝛺, , 𝑃 ) is called 𝐿𝑝-stable (𝑝 > 0) if 
sup𝑡≥0 E(‖𝐴𝑡‖

𝑝) < ∞. We define ‖𝐴𝑡‖𝐿𝑝
≜ [E(‖𝐴𝑡‖

𝑝)]
1
𝑝  as the 𝐿𝑝-norm 

of the random matrix 𝐴𝑡, where E(⋅) denotes the expectation operator.

Definition 5 ([11]). For a sequence of 𝑛 × 𝑛 random matrices 𝐴 =
{𝐴𝑡, 𝑡 ≥ 0}, if it belongs to the following set

𝑆𝑝(𝛼) =
{

𝐴 ∶ ‖

‖

‖

𝑡
∏

𝑗=𝑘+1
(𝐼𝑛 − 𝐴𝑗 )

‖

‖

‖

𝐿𝑝

≤ 𝐶𝛼𝑡−𝑘,

∀𝑡 ≥ 𝑘,∀𝑘 ≥ 0, for some 𝐶 > 0
}

,

then {𝐼 − 𝐴𝑡, 𝑡 ≥ 0} is called 𝐿𝑝-exponentially stable (𝑝 ≥ 0) with 
parameter 𝛼 ∈ [0, 1).

For convenience, we introduce the following subclass of 𝑆1(𝛼) for a 
scalar sequence 𝑏 = {𝑏𝑡, 𝑡 ≥ 0}:

𝑆0(𝛼) =
{

𝑏 ∶ 𝑏𝑡 ∈ [0, 1),E

( 𝑡
∏

𝑗=𝑘+1
(1 − 𝑏𝑗 )

)

≤ 𝐶𝛼𝑡−𝑘,

∀𝑡 ≥ 𝑘,∀𝑘 ≥ 0, for some 𝐶 > 0
}

.

Definition 6 ([35]). A sequence 𝜁 = {𝜁𝑘} is considered an element of 
the weakly dependent set 𝑝 (where 𝑝 ≥ 1) if there exists a constant 
𝐶𝜁
𝑝 , which depends sorely on 𝑝 and the distribution of {𝜁𝑘}, satisfying 
the condition that for any 𝑘 ≥ 0 and 𝑙 ≥ 1,
‖

‖

‖

‖

‖

‖

𝑘+𝑙
∑

𝑖=𝑘+1
𝜁𝑖
‖

‖

‖

‖

‖

‖𝐿𝑝

≤ 𝐶𝜁
𝑝

√

𝑙.

Remark 3.  It is known that the martingale differences, sequences with 
zero mean that are 𝜙- or 𝛼-mixing, and the linear process driven by 
white noises, are all belong to the set   [35].
𝑝
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4.2. Assumptions

For the stability and performance analysis, we make the following 
assumptions about the regression vector, the agent network topol-
ogy, the measurement noise, and the variation of parameters to be 
estimated. 

Assumption 1 (Cooperative Excitation Condition). For the adapted se-
quences {𝑥𝑡,𝑖,𝑡, 𝑡 ≥ 0}, where 𝑡 is a sequence of non-decreasing 
𝜎-algebras, there exists an integer 𝑙 > 0 such that {𝛼𝑡, 𝑡 ≥ 0} ∈ 𝑆0(𝛼)
for some 𝛼 ∈ (0, 1), where 𝛼𝑡 is defined by 

𝛼𝑡 ≜ 𝜆min

[

E

(

1
𝑛(1 + 𝑙)

𝑛
∑

𝑖=1

𝑡+𝑙
∑

𝑘=𝑡+1

𝑥𝑘,𝑖𝑥⊤𝑘,𝑖
1 + ‖𝑥𝑘,𝑖‖2

|

|

|

|

|

𝑡

)]

. (11)

with E(⋅|⋅) being the conditional expectation operator.

Remark 4. Assumption  1 is a spatial–temporal joint excitation con-
dition, which is less stringent than conditions imposed solely on indi-
vidual agents or merely on the regression vectors of agents at a single 
point in time. Intuitively, this assumption implies that over a period of 
time, the aggregate information from all agents must not be ‘‘too close 
to zero’’, or it will fail to achieve the estimation task.

Assumption 2.  The graph  of the multi-agent network is undirected 
and connected.

Assumption 3.  For some 𝑝 ≥ 1, ‖𝛯0‖𝐿2𝑝
< ∞, {𝐿𝑘𝐷𝑘} ∈ 2𝑝 and 

{𝛺𝑘} ∈ 2𝑝.

Remark 5. Assumption  3 posits that the noise and parameter varia-
tions are weakly correlated in some bounded moments sense, enabling 
the establishment of a finer bound in Theorem  3 compared to Theorem 
2. In contrast, weaker assumptions (specifically, moment conditions) 
are imposed on 𝐷𝑘 and 𝛺𝑘 in Theorem  2.

We are now ready to present the main estimation performance 
findings regarding the proposed algorithm.

5. Stability analysis

In this section, we aim to investigate the magnitude of the esti-
mation error after introducing Laplacian noise for privacy protection. 
Before presenting our theorem, we first introduce two lemmas that will 
assist in the proof.

Lemma 3 (See Lemma 4.1 in [36]). Let {𝑏𝑘𝑖, 𝑘 ≥ 𝑖 ≥ 0}, {𝑐𝑘𝑖, 𝑘 ≥ 𝑖 ≥ 0}, 
and {𝜁𝑘, 𝑘 ≥ 0} be three nonnegative processes satisfying:

(i) 𝑏𝑛𝑘 ∈ [0, 1], E𝑏𝑛𝑘 ≤ 𝑐1𝛼𝑛−𝑘, for all 𝑛 ≥ 𝑘 ≥ 0, for some 𝑐1 > 0 and 
𝛼 ∈ [0, 1);

(ii) There exist some constants 𝑐2 > 0 and 𝑐3 > 0 such that sup𝑛≥𝑘≥0 E
[exp(𝑐2𝑐

1∕𝑐3
𝑛𝑘 )] < ∞;

(iii) 𝜒𝑝 ≜ sup𝑘 ‖𝜁𝑘 log
𝛽 (𝑒 + 𝜁𝑘)‖𝐿𝑝

< ∞, for some 𝑝 ≥ 1, 𝛽 > 1.

Then, there exists a constant 𝑐4 > 0 which is independent of 𝜒𝑝 such that
𝑛
∑

𝑘=0
‖𝑏𝑛𝑘𝑐𝑛𝑘𝜁𝑘‖𝐿𝑝

≤ 𝑐4𝜒𝑝 log(𝑒 + 𝜒−1
𝑝 ),∀𝑛 ≥ 0

holds if {𝑐𝑛𝑘} is deterministic.

Lemma 4 (By Corollary 5.5 and Lemma 5.6 in [11]). Consider the estima-
tion error equation (7). Suppose that Assumptions  1 and 2 are satisfied. For 
any 𝜇 ∈ (0, 1) and 𝜈 ∈ (0, 1) satisfying 𝜇(1+2𝜈) ≤ 1, then {𝐼 −𝜇𝐺𝑘, 𝑘 ≥ 1}
is 𝐿 -exponentially stable (∀𝑝 ≥ 1). Specifically, {𝜇𝐺 } ∈ 𝑆 (𝜌𝜆(𝑝)), where 
𝑝 𝑘 𝑝

5 
𝜌 = 𝛼
𝜆2𝜈𝜇

(1+𝑙)(2+𝜈𝜆2) ,  with 𝛼 being defined in Assumption  1, 𝜆2 is the second 
smallest eigenvalue of matrix 𝐼 − and

𝜆(𝑝) =

⎧

⎪

⎨

⎪

⎩

1
8𝑙(𝑙 + 1)2

, 1 ≤ 𝑝 ≤ 2,

1
4𝑙(𝑙 + 1)2𝑝

, 𝑝 > 2.

Recalling the estimation error recursion equation (7) in Section 2.3, 
the exponential stability of its homogeneous portion is guaranteed by 
Lemma  4. With this foundation, we can derive a preliminary upper 
bound on the estimation error of the proposed algorithm. 

Theorem 2.  Consider the estimation error equation (7). Under Assump-
tions  1 and 2, if for some 𝑝 ≥ 1 and 𝛽 > 1, 𝜒𝑝 ≜ sup𝑘 ‖𝜁𝑘 log

𝛽 (𝑒+ 𝜁𝑘)‖𝐿𝑝
<

∞, ‖𝛯0‖𝐿𝑝
< ∞ hold, where 𝜁𝑘 ≜ ‖𝐷𝑘‖ + ‖𝛺𝑘+1‖ + ‖𝐻𝑘‖. Then for any 

𝜇 ∈ (0, 1) and 𝜈 ∈ (0, 1) satisfying 𝜇(1 + 2𝜈) ≤ 1, {𝛯𝑘, 𝑘 ≥ 1} is 𝐿𝑝-stable 
and

‖𝛯𝑘‖𝐿𝑝
= 𝑂

(

(

𝜌𝜆(𝑝)
)𝑘 + 𝜒𝑝 log(𝑒 + 𝜒−1

𝑝 )
)

,∀𝑘 ≥ 1,

where 𝜌, 𝜆(𝑝) are defined in Lemma  4.

Proof.  From (7) we can recursively obtain that
𝛯𝑘+1 =

(

𝐼𝑚𝑛 − 𝜇𝐺𝑘
)

(𝛯𝑘 +𝐻𝑘) + 𝜇𝐿𝑘𝐷𝑘 − 𝛾𝛺𝑘+1

=
𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0 +
𝑘
∑

𝑖=0

( 𝑘
∏

𝑗=𝑖+1

(

𝐼𝑚𝑛 − 𝜇𝐺𝑗
)

)

⋅
[(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝐻𝑖 + 𝜇𝐿𝑖𝐷𝑖 − 𝛾𝛺𝑖+1
]

.

Then, we have

‖

‖

‖

𝛯𝑘+1
‖

‖

‖𝐿𝑝
≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

+
𝑘
∑

𝑖=0

‖

‖

‖

‖

‖

‖

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)[(

𝐼 − 𝜇𝐺𝑖
)

𝐻𝑖 + 𝜇𝐿𝑖𝐷𝑖 − 𝛾𝛺𝑖+1
]

‖

‖

‖

‖

‖

‖𝐿𝑝

≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

+
𝑘
∑

𝑖=0

{

E

(

‖

‖

‖

‖

‖

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

‖

‖

‖

‖

‖

𝑝

⋅
(

‖(𝐼 − 𝜇𝐺𝑖)𝐻𝑖‖ + 𝜇‖𝐿𝑖𝐷𝑖‖ + 𝛾‖𝛺𝑖+1‖
)𝑝
)}1∕𝑝

. (12)

 Let 𝑏𝑘𝑖 ≜ ‖

‖

‖

∏𝑘
𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

‖

‖

‖

, then from Lemma  4 we can get that there 
exists a constant 𝐶 > 0 such that 
(E‖𝑏𝑘𝑖‖𝑝)1∕𝑝 ≤ 𝐶

(

𝜌𝜆(𝑝)
)𝑘−𝑖 , (13)

where constants 𝜌 ∈ [0, 1) and 𝜆(𝑝) > 0 are the same as in Lemma  4.
Combining the facts ‖𝐿𝑖‖ ≤ 1 and ‖𝐼 − 𝜇𝐺𝑖‖ ≤ 1 with (13), it can 

be finally obtained by Lemmas  3 and 4 that

‖

‖

‖

𝛯𝑘+1
‖

‖

‖𝐿𝑝
≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

+ 𝑏0
𝑘
∑

𝑖=0
‖𝑏𝑘𝑖𝜁𝑘‖𝐿𝑝

≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

+ 𝑏[𝜒𝑝 log(𝑒 + 𝜒−1
𝑝 )]

= 𝑂
(

(

𝜌𝜆(𝑝)
)𝑘 + 𝜒𝑝 log(𝑒 + 𝜒−1

𝑝 )
)

,

 which completes the proof.  ■

Remark 6.  Intuitively, by Theorem  2 we know that when the parame-
ter variation 𝛺𝑘+1, the measurement noise 𝐷𝑘 and the Laplacian noise 
𝐻𝑘 are all small, the process 𝜁𝑘 and 𝜒𝑝 will also be small, and hence 
the parameter tracking error 𝛯𝑘 will be small too.

However, to ensure that the algorithm possesses privacy-preserving 
capabilities, the Laplacian noise cannot be made arbitrarily small, 
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necessitating a trade-off between estimation performance and privacy 
protection.

By leveraging additional Assumption  3 on the system noise 𝐷𝑘
and the parameter variation 𝛺𝑘, we can further construct a more 
precise upper bound on the tracking error 𝛯𝑘+1, that explicitly contains 
parameters such as the update step-size 𝜇, parameter change rate 𝛾, and 
Laplacian noise scale parameter 𝜎. We also begin by presenting a few 
auxiliary lemmas.

Lemma 5.  For any given 𝑝 ≥ 2, the augmented Laplacian noise sequence 
{𝐻𝑘} in (6) is 𝐿𝑝-stable.

Proof.  Notice each element of 𝐻𝑘 is i.i.d. as a Laplace random variable 
with mean 0 and variance 2𝜎2, whose probability density function is 
given by

𝑓 (𝑥) = 1
2𝜎

exp
(

−
|𝑥|
𝜎

)

.

Denote the 𝑖th element of 𝐻𝑘 as ℎ𝑘,𝑖(1 ≤ 𝑖 ≤ 𝑚𝑛). Then, we can obtain 
the 𝑝th moment of |ℎ𝑘,𝑖| as 

E|ℎ𝑘,𝑖|𝑝 = ∫

+∞

−∞
|𝑥|𝑝 1

2𝜎
exp

(

−
|𝑥|
𝜎

)

d𝑥

= 1
𝜎 ∫

+∞

0
𝑥𝑝 exp

(

− 𝑥
𝜎

)

d𝑥

𝑦=𝑥∕𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 𝜎𝑝 ∫

+∞

0
𝑦𝑝 exp (−𝑦) d𝑦

= 𝜎𝑝𝛤 (𝑝 + 1),

 where 𝛤 (⋅) refers to the Gamma function.
It can be derived by 𝐶𝑟-inequality that for any 𝑝 ≥ 2,

sup
𝑘

‖𝐻𝑘‖𝐿𝑝
= sup

𝑘

(

E‖𝐻𝑘‖
𝑝)

1
𝑝

= sup
𝑘

[

E
(

ℎ2𝑘,1 +⋯ + ℎ2𝑘,𝑚𝑛
)

𝑝
2
]

1
𝑝

≤ sup
𝑘

{

E
[

(𝑚𝑛)
𝑝
2−1

(

|ℎ𝑘,1|
𝑝 +⋯ + |ℎ𝑘,𝑚𝑛|

𝑝)
]}

1
𝑝

=(𝑚𝑛)
1
2 sup

𝑘

(

E|ℎ𝑘,1|𝑝
)
1
𝑝 =

√

𝑚𝑛𝜎 (𝛤 (𝑝 + 1))
1
𝑝 < ∞.

Furthermore, we can know from Stirling’s Approximation as

𝛤 (𝑝 + 1) ≈
√

2𝜋(𝑝 + 1)𝑝+
1
2 𝑒−𝑝−1 (𝑝 → ∞),

so we can get an approximate bound of ‖𝐻𝑘‖𝐿𝑝
 that

‖𝐻𝑘‖𝐿𝑝
≈
√

𝑚𝑛𝜎(2𝜋(𝑝 + 1)𝑒−2)
1
2𝑝 𝑒−1(𝑝 + 1)

≈
√

𝑚𝑛𝜎𝑒−1(𝑝 + 1) (𝑝 → ∞),

which completes the proof.  ■

Lemma  5 analyzes the moment properties of Laplacian noise. Once 
𝑝 is determined, its 𝐿𝑝 norm is proportional to 𝜎. Next, we introduce 
two lemmas for dealing with the product of random matrices and the 
summation of these products.

Lemma 6 (See Lemma 5.7 in [11]). Suppose that Assumptions  1 and 2 
are satisfied. Then for any 𝑝 ≥ 2, any 𝜇 ∈ (0, 1) and 𝜈 ∈ (0, 1) satisfying 
𝜇(1 + 2𝜈) ≤ 1 and ∀𝑘 ≥ 𝑖 + 1 > 0, there exists positive constants 𝐶𝑝 and 𝜌𝑝
depending on {𝐺𝑗 , 𝑗 > 0} and 𝑝 such that
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑗=𝑖+1
(𝐼 − 𝜇𝐺𝑗 )

‖

‖

‖

‖

‖

‖𝐿𝑝

≤ 𝐶𝑝(1 − 𝜇𝜌𝑝)𝑘−𝑖.

I.e., {𝜇𝐺𝑘} ∈ 𝑆𝑝(1 − 𝜇𝜌𝑝). In fact, we can take 𝜌𝑝 as 1 − 𝜌
𝜆(𝑝)
𝜇

corresponding to Lemma  4 (cf. [11]).
6 
Lemma 7 (See Lemma A.2 in [35]). Let {𝑒𝑘} ∈ 2𝑝, 𝑝 ≥ 1, if {𝜇𝐺𝑘} ∈
𝑆4𝑝(1 − 𝜇𝜌4𝑝) and sup𝑘 ‖𝐺𝑘‖𝐿4𝑝

< ∞, then
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖+1
(𝐼 − 𝜇𝐺𝑗 )𝑒𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

= 𝑂(𝜇−1∕2), ∀𝜇 ∈ (0, 1 − 𝜌4𝑝].

Then, we give a more detailed estimate error bound explicitly with 
specific parameters. 

Theorem 3.  Assume that Assumptions  1–3 are satisfied, and let the 
scale parameter of Laplacian noise 𝜎 ≥ 𝜇𝛿∕𝜀, then for any 𝜇 ∈ (0, 1) and 
𝜈 ∈ (0, 1) satisfying 𝜇(1 + 2𝜈) ≤ 1, we have for some 𝑝 and ∀𝑘 ≥ 0,

‖𝛯𝑘+1‖𝐿𝑝
= 𝑂

(

√

𝜇 +
𝛾

√

𝜇
+ (1 − 𝜌2𝑝𝜇)

𝜎
𝜇
+ (1 − 𝜌2𝑝𝜇)𝑘+1

)

,

where 𝜌2𝑝 ∈ (0, 1) is a constant which is defined in the proof.

Proof.  Using recursive relationship in (12), we first get

‖

‖

‖

𝛯𝑘+1
‖

‖

‖𝐿𝑝
≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

+
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖

(

𝐼 − 𝜇𝐺𝑗
)

𝐻𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

+
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

𝜇𝐿𝑖𝐷𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

+
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

𝛾𝛺𝑖+1

‖

‖

‖

‖

‖

‖𝐿𝑝

.

Then, we will analyze each component on the right-hand side of the 
above inequality in turn.

For the first term, it can be naturally obtained by Assumption  3 that
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

𝛯0

‖

‖

‖

‖

‖

‖𝐿𝑝

≤
‖

‖

‖

‖

‖

‖

𝑘
∏

𝑖=0

(

𝐼𝑚𝑛 − 𝜇𝐺𝑖
)

‖

‖

‖

‖

‖

‖𝐿2𝑝

⋅ ‖‖
‖

𝛯0
‖

‖

‖𝐿2𝑝

≤ 𝑂
(

(1 − 𝜇𝜌2𝑝)𝑘+1
)

. (14)

From Lemma  5 we have
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖

(

𝐼 − 𝜇𝐺𝑗
)

𝐻𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

≤
𝑘
∑

𝑖=0

‖

‖

‖

‖

‖

‖

𝑘
∏

𝑗=𝑖

(

𝐼 − 𝜇𝐺𝑗
)

𝐻𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

≤
𝑘
∑

𝑖=0

‖

‖

‖

‖

‖

‖

𝑘
∏

𝑗=𝑖

(

𝐼 − 𝜇𝐺𝑗
)

‖

‖

‖

‖

‖

‖𝐿2𝑝

⋅ ‖
‖

𝐻𝑖
‖

‖𝐿2𝑝

≤
√

𝑚𝑛𝜎(𝛤 (2𝑝 + 1))
1
2𝑝

𝑘
∑

𝑖=0
𝐶2𝑝(1 − 𝜇𝜌2𝑝)𝑘−𝑖+1

=
√

𝑚𝑛𝜎(𝛤 (2𝑝 + 1))
1
2𝑝 𝐶2𝑝

(1 − 𝜇𝜌2𝑝)[1 − (1 − 𝜇𝜌2𝑝)𝑘+1]
𝜇𝜌2𝑝

=𝑂
( (1 − 𝜇𝜌2𝑝)𝜎

𝜇

)

. (15)

From Lemma  6 we can see {𝜇𝐺𝑘} ∈ 𝑆4𝑝(1 − 𝜇𝜌4𝑝) holds. Further 
combining Assumption  3 and the fact that ‖𝐺𝑘‖ ≤ 1 + 2𝜈 < ∞ with 
Lemma  7, it can be obtained that
‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

𝜇𝐿𝑖𝐷𝑖

‖

‖

‖

‖

‖

‖𝐿𝑝

= 𝑂(𝜇1∕2), (16)

‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0

𝑘
∏

𝑗=𝑖+1

(

𝐼 − 𝜇𝐺𝑗
)

𝛾𝛺𝑖+1

‖

‖

‖

‖

‖

‖𝐿𝑝

= 𝑂(𝛾𝜇−1∕2). (17)

Combining (14) to (17), the result can be concluded.  ■

Remark 7.  Given that 𝜎 can be taken as 𝜇𝛿∕𝜀, the bound in Theorem 
3 can be rewritten as √𝜇 + 𝛾

√

𝜇
+ (1 − 𝜌2𝑝𝜇)

𝛿
𝜀 + (1 − 𝜌2𝑝𝜇)𝑘+1. From this, 

it is easy to see that as 𝜀 decreases, the privacy protection performance 
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Fig. 1. The scale-free network topology of 50-agent network.

improves, but this leads to an increase in the estimation bound. On the 
other hand, to reduce the error caused by the time-varying nature of 
the parameters to be estimated, the update step size 𝜇 can be increased. 
However, this will amplify the effect of the inherent system noise. 
Therefore, the trade-offs between privacy protection and estimation 
accuracy, as well as between tracking ability and noise sensitivity, 
require careful consideration.

From Theorems  2 and 3, it can be seen that the stability results of 
the distributed PP-NLMS algorithm do not depend on the independence 
or stationarity conditions of the regression vector {𝑋𝑘}. Thus our 
algorithm can be applied to stochastic feedback systems.

6. Simulation results

To validate the trade-off between privacy protection and parameter 
estimation performance of our proposed algorithm, we consider a net-
work composed of 50 agents. The common estimation target for these 
agents is a time-varying 3-dimensional parameter vector 𝜉𝑘 with initial 
value 𝜉0 = [1, 0,−1]⊤. The variation of each element in this parameter 
vector is designed to follow a Gaussian distribution 𝑁(0, 12), with the 
weighted parameter 𝛾 in (2) set to 0.01. The system measurement 
noise {𝑑𝑘,𝑖} is designed to be spatially and temporally independent 
and identically distributed (i.i.d.) according to a Gaussian distribution 
𝑁(0, 0.12). Additionally, it is assumed that the regressors {𝑥𝑘,𝑖} are 
generated in the following form:

𝑘,𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

0.9𝑡 +
𝑡−1
∑

𝑗=0
0.9𝑗cos

( 𝑖𝜋
𝑛

)

𝑣𝑘,𝑗 , 0, 0

]⊤

, if 𝑖 ≡ 1(mod 3)

[

0, 0.9𝑡 +
𝑡−1
∑

𝑗=0
0.9𝑗cos

( 𝑖𝜋
𝑛

)

𝑣𝑘,𝑗 , 0

]⊤

, if 𝑖 ≡ 2(mod 3)

[

0, 0, 0.9𝑡 +
𝑡−1
∑

𝑗=0
0.9𝑗cos

( 𝑖𝜋
𝑛

)

𝑣𝑘,𝑗

]⊤

, if 𝑖 ≡ 0(mod 3)

where {𝑣𝑘,𝑖} are spatially and temporally i.i.d. to a Gaussian distribu-
tion 𝑁(0, 0.42). To demonstrate the robustness and scalability of the 
proposed algorithm, we examine its parameter tracking performance 
under different network topologies, namely the complete graph, the 
ring graph, and the scale-free network (as shown in Fig.  1).

Under the given settings, it can be easily verified that Assumptions 
1 to 3 are satisfied. Here, we repeat the simulation 50 times with the 
7 
Fig. 2. Trajectories of 3-dimensional parameter estimation across fully connected, ring, 
and scale-free network topologies with privacy parameter 𝜀 = 0.1.

same initial state. Fig.  2 illustrates the average estimation performance 
of the proposed algorithm across 50 agents under different network 
topologies with the privacy parameter 𝜀 = 0.1. The three subplots in 
Fig.  2 display the estimates under complete graphs, ring graphs, and 
scale-free networks, and the true values for the three dimensions of 
the parameter to be estimated, respectively. It can be observed that all 
agents are able to accomplish the estimation task with low error.

To visualize the impact of Laplacian noise on the algorithm, we con-
ducted parameter estimations using our distributed PP-NLMS algorithm 
under various scale parameters of Laplace noise. We employ the metric 
1

2500
∑50

𝑗=1
∑50

𝑖=1 ‖𝜉
(𝑗)
𝑖,𝑘 − 𝜉𝑘‖2 (where 𝑖 = 1,… , 𝑛 and 𝑘 = 1,… , 600) to 

calculate the average estimation error. Here, 𝜉(𝑗)𝑖,𝑘 represents the esti-
mated parameter value of agent 𝑖 at time step 𝑘 in the 𝑗th experiment. 
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Fig. 3. The estimation error of Algorithm 1 with different Laplacian noise.

The outcomes are compared with those from the distributed NLMS 
algorithm without privacy protection, as illustrated in Fig.  3. Note that 
when the sensitivity remains unchanged, a larger 𝜎 can provide a higher 
degree of privacy protection. However, increased privacy protection 
inevitably leads to greater estimation errors. This highlights the neces-
sity for our algorithm to balance between estimation performance and 
privacy protection, consistent with the previous Remark  7.

7. Concluding remarks

In summary, we have proposed a privacy-preserving distributed 
adaptive estimation algorithm for estimating time-varying parameters. 
Compared with other privacy protection algorithms, the superiority 
of our algorithm mainly lies in the allowance for non-stationary and 
non-independent regressors, as well as the effective estimation of time-
varying parameters, making it applicable for feedback control systems. 
In this work, we establish differential privacy results for the proposed 
algorithm under finite iterations. In the future, we will consider design-
ing diminishing step-sizes to ensure privacy protection under infinite 
iterations. Additionally, validation with real-world datasets will be 
conducted to further demonstrate the algorithm’s practical efficacy.
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